Planning and scheduling infrastructure projects for success

Hassan Emam

PhD Research Candidate
he2mpo@bolton.ac.uk

Agenda

- Introduction

Scheduling Techniques
Objectives and Schedule Influences

- Practical Constraints Affecting Schedules

Uncertainties Associated with Construction

Introduction

- Construction industry has considerable contribution to countries economy
- Over 80% of infrastructure projects completed behind schedule
- Top causes of delays in Infrastructure projects are:
- Major change in design during construction;
- Ineffective planning and scheduling;
- Changes in the scope of the project; and
- Slow decision-making.

Emam et al. (forthcoming)

Introduction

Rank
 Description

Relative Importance
 0.88
 0.80

1 Contractual Related
2 Duration Estimation
3 Scheduling Parameters
0.79

4 Resources
0.76

5 Logic
0.70

6 Constraints
0.67

Criteria Contributing to Schedules Quality of Programme.
Emam et al. (2014)

Scheduling Variables

- Scheduling technique / representation;
- Objective-driven Scheduling;
- Constraints; and
- Uncertainties.

Scheduling Techniques

Classification of scheduling techniques (Kenley and Seppänen, 2009)

Scheduling Techniques - Activity-based

Activity-based planning

Scheduling Techniques - Activity Cyclic Planning

Analytical Design and Planning Technique (ADePT)

Scheduling Techniques - Activity Cyclic Planning

Scheduling Techniques - Location-based

Location-based planning

Scheduling Techniques

Type of Project
Scheduling method

Linear and continuous projects
Multiunit repetitive projects
High-rise buildings
Refineries and complex projects
Simple projects

LSM
LOB
LOB, VPM
PERT/CPM
Bar/Gantt charts

Schedules Objectives

Main objectives:

- Maximise Safe Work Conditions;

The Project Diamond

(Used to be the iron triangle)

- Minimise Environmental Impact;
- Minimise Time;
- Minimise Cost;
- Maximise Quality; and
- Scope Coverage.

These objectives are conflicting in nature and require trade-offs.
Project stakeholders will have different

Schedule Constraints

The schedules normally are constrained due to several reasons thus:

- Precedence relationships;
- Space limitation;
- Resource availability;
- Resource continuity;
- Others

Schedule Models Philosophy

"Philosophy [nature] is written in that great book which ever is before our eyes -- I mean the universe -- but we cannot understand it if we do not first learn the language and grasp the symbols in which it is written. The book is written in mathematical language, and the symbols are triangles, circles and other geometrical figures, without whose help it is impossible to comprehend a single word of it; without which one wanders in vain through a dark labyrinth."

Galileo Galilei

Schedule Model: A Deterministic Formulation

The following model captures a mathematical formulation for scheduling model that can be solved using linear optimisation technique.

- The model explicitly states the objective to minimise cost
- Subject to the following constraints
- Precedence constraints i.e. relationships
- Second constraint is to ensure the availability of resources is not exceeded

$$
\begin{array}{lll}
\text { Min } & C_{n} & \\
\text { s.t. } & C_{1}=0 & \\
& C_{j}-t_{j} \geq C_{i} & \forall(i, j) \in E \\
& \sum_{j \in A(t)} r_{j k} \leq a_{k} \quad t=1,2,3 \ldots C_{n} ; k=1,2,3 \ldots . K
\end{array}
$$

Construction scheduling problems solved!

The straight answer is NO

The presented formulation has several shortfalls as follow:

- Uncertainties are not considered in the model
- It is static model which is not suitable to construction projects

Sources of Uncertainties

There are known knowns; there are things we know that we know.

There are known unknowns; that is to say, there are things that we now know we don't know.

But there are also unknown unknowns - there are things we do not know we don't know.

[^0]
Sources of Uncertainties

Foreseeable Uncertainties

Variability

Alternative

Paths

Complexity

Project Tasks

Stakeholders

Unforeseen Uncertainties

Novel
 Technology

Novel
 Markets

Planning for Uncertainties

(Loch, DeMeyer, Pich 2006)

Risk Management Process

Risk Management - Current Practice

Risk Management - Integrated Framework

Dynamic Planning for Changing Environment

Dynamic Planning

Dynamic scheduling is defined as
"the process of absorbing the effect of real-time events, analysing the current status of schedule, and automatically modifying the schedule with optimised measures in order to mitigate disruptions."

There are three main categories of Dynamic scheduling:

- Reactive scheduling
- Predictive-Reactive scheduling
- Robust scheduling

Dynamic Planning - Analytics

Dynamic Planning - Reactive Scheduling

Dynamic Planning - Robust Scheduling

Dynamic Planning - Predictive Reactive Scheduling

Scheduling Techniques - BIM Integrated

Conclusion

- Select appropriate scheduling technique that best models project characteristics;
- Set-up reporting system that allows for Big Data Analytics to reduce uncertainties;
- Communicate schedules efficiently and effectively with project stakeholders;
- Understand the dynamic nature of construction industry and be proactive and responsive to change;
- The Industry should move towards relational contracts;
- Provide technical training to planning and scheduling team to enable them to facilitate using advanced techniques.
- Blending available knowledge (Analytics, Simulation, Optimisation, BIM, etc.) to achieve best results.

Thank You

Questions \& Answers

Hassan Emam
PhD Research Candidate he2mpo@bolton.ac.uk

[^0]: -Donald Rumsfeld

